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ABSTRACT

This paper presents a method of analysis for evaluating the softening behavior of RC members. In
order to obtain mr.a.h objective results, a non-local f|hu element model is introduced. The resisting
forece ol each  section, in the non-local fiber element maodel, is ealeulated using a proposed
dillferential |HH[L]&,EIL model, which is especially developed for madeling softening behavior under
cyclic Joading. The section hysteretic response is determined using microphone constitutive maodel
for concrete and bi-linear elasto-plastic model for 1L||1FU|¢:ment$ The calculated hysteretic
behavior of sections is emploved to scale the parameters of the differential hysteretic maodel, The
proposed method is verified by the available experimental results. Close agreements between the
numerical and experimental results are obtained. The method provides insight to the procedure of
flexural localization, Also, due to computational efficiency of the methad, it is possible 1o extend its
use for analyzing RC frames with softening members,

Keywords: differential hysteretic model, fiber element model. non-local model, reinforced concrete
flexural members, softening

I. INTRODUCTION

Fiber element models, used in this study. are among mast promising nonlinear analysis models
of frame structures. Tn these models load-displacement history of a number of sections along
member length are traced in order to capture the gradual spread of nonlinearly. non- Imeariy Fiber
clement models can be classified in two main groups: stiffiess based and Hexibility based models,
As discussed by Zeris and Main [13] the conventional stiffness based models are unable to satisfy
equilibrium 4Iun'= member length when softening oceurs, They proposed a procedure to handle the
situation. Later Neuenhofer and Filippou [7] madifyving the model introduced by Spacone et al.
[11]. developed a general flexibility based model with the ability to strictly satisfy equilibrium.

[t is well known that standard local finite element methods are mappropriate for analysis of
softening structures. Softening engenders problems of lack of mesh objectivity and localization
af the dﬁ]]hLLmLula into narrow  bands whose width depends on the element size and tends 1o
zero as the mesh refined. A simple and computationally efficient way 1o avoid aforementioned
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problems is to use non-local formulations. Bazant [1] and Jirasek and Bazant [4] postulated a
series of general non-local models. in which stress at each point is a function of not only strain at
that point, but also the strains in its vieinity. Application of these models to the flexural softening
problems, in cases of existence of moment gradient. shows that these models are not able 1
properly  predict the element behavior. To overcome this deficiency a non-local model was
developed which is especially suitable for the case of non-homogenous stress fields.

To improve computational efficiency in the fiber element model, for evaluation of the section
resisting force, hysteretic differential model is used. Conventional differential models, based on
Bouc-Wen differential model, are not able to properly model the softening behavior in the eyelic
loading. A hysteretic differential model is developed. which is capable of modeling the section
behavior during cyelic loadings that enter softening,

To scale parameters of hysteretic model. appropriate constitutive models for concrete and
reinforcements should be used to obtain the section moment-curvature behavior. In this paper the
micro-plane model of Bazant et al [2] for concrete and bilinear elasto-plastic model for
reinforcements are used.

In the following sections, the procedure used for analysis of RC members with softening
behavior is presented. This procedure includes evaluation of section load-displacement behavior.
the proposed differential hysteretic model and non-lacal Dher element model,

2. DERIVATION OF SECTION MOMENT-CURVATURE BEHAVIOR

Te obtam the section moment-curvature behavior, the micro-plane model ol Bazant ¢ al, [2]
as constitutive model for concrete and bi-linear elasto-plastic model for reinforcements is used. In
the following some points associated with the vse of micro-plane model are discussed.

In compression  reloading, after tension unloading the micro-plane model shows incorrect
behavior. In the micro-plane model concrete enters compression incorrectly before the tensile cracks
are closed. even without any stiffness degradation. The following steps are taken o avoid this
problem:; (17 All value of the all micro-planes variahles in the gauss points, in the last converged
compression status are stored, (2) A macroscopic constitutive law is used for concrete in lension,
and (3) In compression reloading, after closing of the tensile cracks. the last converzed compression
state is used as nitial condition, The stress-straim relationship in tension s taken linear up to the
cracking and then emploving the following exponential function

a=f,exp(-Alz—¢,)) (1)

in which # and & are stress and strain of concrete laver, £, and o are the steess and strain
corresponding o the crack initiation and L is a0 positive constant. 11 s assumed that tensile
unloading and reloading Tollow secant slope after tensile cracking.

Euler hypothesis of plane sections remain plane after deformation is assumed 1o obtain the
section moment-curvature relationship. Since at this stage only the behavior of one section is
considered, there are parallel coupling  between concrete layers. Subsequently, there is no need o
nse any  special measure, such as non-local maodels at this stage. Displacement control on curvature
and load contrel on axial force is used to develop the section load-displacement relationship. The
initial stiffness method is used for iterative solution of the equilibrium equations.

Conerete at each  laver of the section is modeled as a three-dimensional Gauss point. Lateral
equilibrivm - at each layer is imposed separcately, this makes it 15 passible to take intlo account the
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different confining condition at each layer, For each layer the shape and spacing of transverse
reinforcement 15 considered by changing the amount of effective transverse remforcement. [t is
assumed that the strains in the two transverse directions are equal, Therefore lateral equilibrium
equation for each concrete layer (Gauss point) will be

(F, ), +po, 4, =0 (2)
i which (F, ). 15 the average of the two lateral forces i concrete fayer £, and g denotes the degre
ot efficiency of passive confinement. &,/ is the stress in the transverse reinforcements ol layer 7 and
A, 15 the area of the transverse reinforcement per unit length of the flexural member. The degree of
efficiency of the passive confinement is defined as the ratio of the confined concrete area to the
oross area of each layer. The method of Sheikh and Uzumeri [10] is used for caleulating the
confined concrete area in each laver. The method takes into aceount the shape and spacing of the
transverse reinforcements. For transverse reinforcements bi-linear hysteretic model 15 used.

3. DIFFERENTIAL HYSTERETIC MODEL
After evaluating the section moment-curvature, a differential hysteretic model s used to

simulate the section load-displacement. Based on the differential hysteretic model of Boue-Wen.
dimensionless rate equation for section resisting moment will be

W=op+{l-a)z i3
in which @ is the ratio of post-vield to pre-vield stiffness. ¢ is dimensionless curvature and = is

the hysteretic curvature and dot denotes derivative with respect to time. Using the Foliente [3]
differential model. the rate equation for 7 s

=R~ (Asen(p)sen(z)+ )z loin (4)
where .y and # are the parameters of the hysteretic model, n is stiffness degradation parameter,
Bizy is the pinching function and sgn is the signum function. Assuming that sum of Fand yis equal

to one, the pinching function (=) in unloading is equal to one (i.e.. there is ne pinching) and in
loading and reloading is given by

h(z)=1-8 exp(—(zsen{@)—q,)" /8,)) (5)
in which &, and & evolve as function of hysteretic dissipating energy u, as follows
S () =8, (1—expl—qg,u ) &, (u ) ={q, +qu Mg, +&,) {Berh)

in these equations gp.....p: and &, are constants which control the spread and severity of
pinching. The rate equation for hysteretic dissipating energy is
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u ={l-a)ze {7)
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Figure 1. Behavior of the conventional and proposed differential models in cyclic loading

Elastic constitutive equation for axial force is used.

As can be seen in Figure | there is two asymptotic lines for M- curve at large curvatures. In
conventional dilTerential model when softening in  the positive (negative) direction oceurs, in
load reversal ihere will be a fictitious increase in the strength in the negative (positive)
directions, This behavior is not justified.

4. PROPOSED DIFFERENTIAL MODEL
To overcome this deficiency, the following evelution equation for i7is introduced. From
hercon it is assumed that n is equal to one. This restriction does not influence the capability of
the model, The evolution equation for 17 will be

1= 21.2643w(w — 0504)(w” + 45680 +.1244) exp(—a) (8)

Mote that when softening occurs, 7 remains constant. In unloading. « is

loe Gy ¥y — )z
" og(l +sgn(e)y ~ F)z,) ¢ lba( ¥4 ) (99
v—f | -

=

while for loading or reloading
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a=-1+log(————)
{(1—a)1=2z,)

(10
Other variables in (8) are delined as follow

w=cexpla): c=sgn(ei M, +(1—a)sen(p)—z;)— .-'lffﬂ Vi (1leb)

where M, and =, are the values of moment and hysteretic curvature in the beginning of load-step
and M, is the peak resisting moment of the section determined as follow.,

M 5 M | (ed=0) {12e)
M, =M (dp=0) (12h)

Belore occurrence of softening
MY ==log(-a/(l-a)+1: M =log(-a/(l-a))-1 (13a.8)

If in a load-step in positive (or negative) curvatures softening occurs then the value of M, (or
M) for the section should be set equal to the value of the section resisting force at the end of
soltening load-step.

Use of conventional integration schemes for numerical integration of the rate equations
engenders the problem of error propagation {e.g., Kulkarni etal. [5]). To avoid this problem
direct integration scheme (assuming constant /=) and i and noting that # is assumed to be equal
to one) which gives exact solution of the rate equations and prevents the error propagation, is
used in this study.

5. NON-LOCAL FIBER ELEMENT MODEL
Fiber models can be classified in two main groups: stiffness based and flexibility based
models, Due to interpolation ol displacement by Hermitian interpolation lunctions in stillness
based models, curvature distribution is linear even at large curvature localization. where the
actual curvature distribution is nonlinear. Following Mahasuverachai [6] in flexibility based

models, the nonlinear curvature distribution can be approximated using variable flexibility
interpolation functions, as follows

Ad(x) = f(x)Aq ; AD(x) = b(x)AQ: AQ = F'Aq (14a,h.c)
Now using equations ( 14) the section displacement vector d(x) will be

Ad(x) = f(x)b(x)F ' Aq = a(x)Aq (15)
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where dix) denoles section displacements vector, fix) is section flexibility matrix, bix) is the force
interpolation veetor, Fis the element flexibility matrix. q is the element nodal displacement vector.
alx) is equivalent variable displacement interpolation vector, D is the section resisting force vector
and € is the element nodal resisting force vectol

I this study the fiber element model introduced by Neuenhoter and Filippou [7] is used. This
model is able te satisfy equilibrium along member length even when soflening occurs, By some
changes in the representation, the Rber element model of Neuenholer and Filippou is deseribed
in the following. After evaluation of the element nodal displacements. following conventional
pracedure in the stifthess based finite element, the member nodal forces in iteration 7 is ohtained

=
AQ' =(F ") 'Aq' (16)

Now the section displacements, considering the section unbalance forces at the end of iteration /-
L. is calculated as

AD'(x) =b(x)Aq +b{x)Q" =D (x) {17e)
Ad'(x) =7 ()AD () d' () =d"(x) + Ad' () {(17h.¢)

where the member nodal resisting force is determimed nsing the variable displacement interpolation
fumection a{x) as follows

i
Q= Ja"l (x)D" (x)edx (18)

In this study the Gauss-Lobatto integration scheme is used Tor numerical mlegrition. [n this
scheme two integration points coincide with member end sections, where significant inclastic
deformation usually takes place.

Il the prescribed [ber element model is used in softening problems, there will be spurious
mesh sensitivity, The slope of the descending branch of the load-displacement curve will be
strongly dependent on the discretization of the model used in the analysis. Increase i number of
the Gauss points or the number of the elements. results in steeper descending branch. There are a
number of  ways to ebtain objective Nnite element results. The non-local models provide simple
and acceptable solution 1o overcome this problem. Two non-local models are used in this study,
as s deseribed in the Tollowing.

(1) Based on the concept ol crack imteractions, Bazant [1] suggested a general non-local
model in which only the inclastic stress increment was evaluated non-locally and the elastic
stress increment evaluation remained local. In this method after local evaluation of stress
increment at cach point, the caleulated stress increment decomposed into elastic and melasnic
components. For a flexural element this formulation becomes

AM, = ElAg + AM, (19)




AMALYSIS OF SOFTENING RC ELEMENTS USING NON-LOCAL . 149

Where AM, denotes the increment in the section resisting force evaluated locally, £/ is
section stiffness. Ag s increment in the section curvature, AM,, is the inelastic increment in the
section resisting force. After determination of AM,, the spatial average of the section inelastic
moment increment =AM, > is determined by

< AM (x) >= Jr J-i'l.;\'f ey (r)dr (209

where integration is done along  the element length and w, shows the weight function used for
spatial averazing. Now the non-lecal increment in the section moment is calculated

AM = ElAp+ <AM, > (21)

Non-local formulation  defined above is used only when there is virgin loading otherwise the
usual local formulation will be applicable. This formulation has two advantages over the non-
local damage model. The first is the generality of the [ormulation that makes it possible to use
the formulation in conventional finite element programs with little changes in algorithm and also
for any type of constitutive equation. The second advantage is that due to local evaluation of AM
the unloading and loading eriteria is also local.
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Figure 2. Effect of the moment gradient on the behavior of the non-local formulation
The weight function is
T 2 : . 1 .
w (Fy=(1=r R )< R (22)

Where & is interaction radius related to the characteristic length £, For Mexural element, B is
equal to 0.9373/,. Outside of the interaction radius, w, becomes zero, As discussed by Pijaudier-
Cabot and Bakant [8]. use of Euler hypothesis in beams requires that the averaging length be greater
than or equal o the beawm depth. Do this study the value of {15 taken equal o the beam depth. It
should be mentioned that this length is also approximately equal to the length of plastic hinges of
flexural members. There 15 no difference between local and non-local evaluation of the axial
resisting force due to assumption of elastic constitutive equation for axial load.
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(23 As loading process continues the interaction zone becomes thinner. 1t the unloading stiffness
is used in definition of elastic moment increment then the decrease in the unloading stiffhess due
to stiffness degradation can also decrease the interaction between neighboring points, Taking this
into account lirasek and Bazant [4] suggested the use of unloading section stiffness (£, instead
of £f of equations (197 and (21),

Application of the aforementioned formulations for flexural softening problems shows that
the behavior of the models, in the presence of substantial moment gradient in the softening zone.
is not satisTactory, The performance of the models improves. as the moment Neld tends 1o be
homogenous. To Hlustrate this problem consider cantilever beams with different lenaths, same
characteristic length and same section behavior. It is assumed that the ultimate strenath of the
section is 200 KN-m. As the length of the beams increase the moment gradient along member
length reduces. Figure 2 shows the behavior predicted by the first non-local model, The behavior
that is predicted by the other tormulation is almost the same.

6. PROPOSED NON-LOCAL MODEL

Due to the presence of moment  gradient i the practical beam-column elements, 1o be able Lo
obtain a good estimate of element response. there 15 a need for a non-local model for the cases
where there is appreciable moment gradient. For these cases the following proposed non-local
maodel gives promising results. In this model {after initiation of softening) the section moment
merement is decomposed into two components as follows

AM, = L—Jf-_lrjl- AM 4+ AM, (23]
(£, ;

i
where (£4), is the tansential stiffness of the section and (£7),, i the unloading stiflness al peak
moment. Mow the non-local moment merement ot the section will be

£l
AM =22 A L AM, > (24)
(ED),, >

where =AM denotes the spatial average of AM-,
Initial stitffhess method is wsed for iterative solution of nonlinear svstems of equations.
Energy increment in ilerations is used as convergence criteria.

7. VERIFICATION OF THE NUMERICAL MODEL

The numerical results are compared with experimental  data to assess the capability of the
model, Specimen A-3 of Sheikh and Yeh [9] and specimen No. 2 of Watson and Park [12] are
selected for comparison due to the observed softening in their behavior. The first specimen was
tested under monotonic loading. It was subjected to constant axial load, followed by application
of third point loads that results in constant moment region in the middle third parnt of the column.
Althouzh some sections adjacent to the load application points, located outside of the constant
moment region. are also geing into soltening, the soltening zone is aregion with relatively
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homogenous moment Neld. The second specimen was tested under evelic loading. Alter
application of axial lead. the specimen was loaded laterally through a central stub, which
simulates the beam-column connectien, So the critical sections of the column are the sections
adjacent to the central stub where there is substantial moment gradient. Table | gives details of
the specimens.

Table 1. Details of verification specimens

Specimen Conc, | Longitudinal steel Transyerse steal
Designation Size and Axial Gross Core
| fe Murmber fy Spacing fy Load Dim. i,
tMPa) | and size | (MPa) imrm) iMpa) | (kM) {mim) mmj
A3 3z 4 BFG 525 H2ER108 4455 1840 205x305 287267
{Sheikh &

Yeh [10]) |

|
|
Uinit No.2 440 | BB 446 o @Y 360 2110 | 400x400 | 36Bx366 ‘

Watzan &
Park [12])

8. SPECIMEN A-3 OF SHEIKH AND YEH

The section  caleulated moment-curvature 15 shown in Figure 3, As can be seen the
differential model is able to approximate the caleulated moment-curvature very well.

Figure b shows the resull of the local formulation using three elements and different number
of the Gauss points per element. The effect of imperfection is also shown in the figure. The
imperfection is introduced by increasing the swength of the center clement in order of 0.1
percent, In addition to mesh sensitivity. the local formulation is sensitive to the imperfection. In
fact the local model is so sensitive that in some cases change of the numerical procedure can
result in triggering different descending branches. This shows that the local model is not reliable
for predicting the softening behavior,
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Figure 3. Moment-curvature of specimen A-3 (Sheikh and Yeh [10]) caleulated by micro-plane
madel and approximated by hysteretic differential model
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Figures 5 and 6 show the element behavior caleulated by different non-local models using
three elements. For modeling of each third part of the specimen an element is used. While the
slope of the descending branch in the local model is strongly dependent on the number of the
Gauss points. in non-local models mesh dependency s effectively suppressed. However the
predictions of three non-local models are different. The non-local formulation (2) yields the best
predictions. Note that the miember resisting force caleulated by non-local formulations is slightly
larger than the seesion resisting force caleulated using section properties (Figure 3). This
increase in the resisting moment is due to existence of moment gradient in a part of the softening
region and malfunction of the non-local models.
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Fizure 4. Mesh dependency and sensitivily to imperfeetion in local formulation
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Figure 5. Moment-displacement of specimen A-3 (Sheikh and Yeh [10]) evaluated by non-local
formulation (1)
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formulation (2}
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Figure 7. Moment-displacement of specimen A-3 (Sheikh and [9]) evaluated using low order
elements with different non-local formulations

To compare the behavior of low order and high order elements in Figure 7 the test specimen
15 modeled using four elements per each third part of the specimen with three Gauss points per
element. The proposed non-local formulation in this case does not give good results. In this case
i which the moment field is relatively homogenous, the non-local formulations with Tow order
elements give the results similar to those of high order clements,

9. SPECIMEN NO.2 OF WATSON AND PARK

[he calculated section moment-curvature is shown in Figure 8. For this specimen due to
exnisting moment gradient the behavior of high order elements is not as good as that observed in
specimen A-2. Therefore for this specimen, elements with two Gauss points are used.
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Figure 8. Moment-curvature of specimen No.2 { Watson and Park [12]) calculated by micro-
plane model and approximated by hysteretic differential model
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Figure 9. Moment-displacement of specimen No.2 { Watson and Park [ 12]) evaluated by local
formulation

Figure 9 compares the result of the local formulation using three and five elements with two
Gauss points per element with experimental results. As can be seen there is strong mesh
dependency in the observed results,

Figure 10 shows the specimen moment-displacement evaluated by different non-local models
using five elements. To be able to compare all models only the resulting menotonic moment-
displacement for different models is shown. All of the non-local models suppress mesh
dependency effectively, however except for proposed model there is essential increase in the
predicted peak moment and resulting behavior is incorrect.

The specimen  moment-displacement evaluated using proposed non-lecal formulation s
shown in the Figure 11, Mesh dependency effectively eliminated and the resulting behavior
gives a good approximation of the actual behavior.
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Figure 10, Moment-displacement of specimen No.2 (Watson and Park [12]) evaluated by
different non-local formulations
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Figure |1, Moment-displacement of specimen No.2 (Watson and Park [12]) evaluated by
proposed non-local formulation

CONCLUSIONS

The section moment-curvature is evaluated using micro-plane and bilinear elasto-plastic
models for  concrete and reinforcements, respectively. The micro-plane model gives zood
simulation of the concrete behavior especially for passive confinement by transverse
reinforcements, To improve numerical efficiency in frame analysis, the calculated behavior is
approximated using a proposed differential hysteretic model. Deficiency of the conventional
differential models in cvelic loading that enters softening is investigated and  a new model
proposed. To avoid mesh dependency non-local measures available in the literature investigated,
It is shown that in the presence of appreciable moment gradient in softening region, the non-
local models gives unacceptable results. A non-local maodel developed that gives promising
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results in the presence of the moment gradient. This study shows the need for a non-local model
that is equally applicable for homogenous and nen-homogenous moment lields. The
performance of low and high order elements in the presence of homogenous and non-
homogenous moment fields is investigated. The proposed methed can be vsed 1o investigate the
effect of possible softening in the overall response of the RC frame structures subjected 1o
earthquake excitation and assess the applicability of the Codes seismic provisions to the cases
where there is softening possibility,
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ANALYSIS OF SOFTENING RC ELEMENTS USING NON-LOCAL ...

= Young medulus of elasticity of concrete

= section stilfness

= unloading section stiffhess

= unloading section stiffness at peak moment
= tensile cracking stress '

= pinching function

= section resisting moment

= parameters af differential hysteretic model
= weight function used lor spatial averaging
= section hysteretic curvature

= displacement interpolation function vector
= force inferpolation Tunction vector

= section displacement vector

= section force vector

= section flexihility matrix

= element flexibility matrix

= element displacement vector

= element force vector

= ratio of post-vield to pre-vield stiffness

= parameters of differential hysteretic model
= constants of pinching function

= tensile cracking strain

= stilTness degradation parameter ol differential hysteretic model
= consban _

= degree of efficiency of passive confinement
= dimensionless section curvature
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